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FOREWORD

This report describes impact experiments performed with the NSWC gas gun to investigate a

technique for increasing flyer plate velocities. This work was supported by NAVSEA Block No.
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1. INTRODUCTION

This report describes gas gun experiments and computational simulations for planar impact
staging to achieve high velocities for flyer plates. Staging techniques take advantage of multiple

wave interactions in impacted layered targets and have been the subject of several experimental

and analytical studies. 1- 3 For certain conditions the velocity of the flyer plate (the target layer

farthest from the impact plane) can be greater than that of the impactor plate (see Figure 1) by

60% or more. 3

BUFFER

IMPACTOR \FLYER\ \I

/ / t I

Impacter Flyer Impactor Flyer ImpactorI V1  -0

BEFORE IMPACT AFTER IMPACT

Figure 1. Schematic of planar impact staging. V, mpactor and vimpactor ar the initial and final
velocities of the impactor, respectively. VF Iy or VF vlyer

r and 2 are the initial and final
velocities of the flyer, respectively. For certain combinations of the materials and

relative thicknesses of the impactor, buffer, and flyer, vFlyer can be greater than
v,mPactar. The shock impedance of the buffer is assumed to be less than that of

the impactor or flyer.
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Explosive plane wave lens experiments 2 and two-stage light gas gun experiments3 have

demonstrated this effect with impactors and multilayered targets consisting of materials having a

wide range of shock impedances, from high-impedance tantalum to low-impedance lithium. The

layered targets were constructed so that the layers of "buffer" material (between the impactor

and the final "flyer" layer) were arranged in order of decreasing shock impedance and the thick-

nesses of the buffer layers were selected so that the stress wave transit times in the layers were

approximately the same.

The impact experiments described in this report were performed with the NSWC gas gun 4 for

simple one- and two-layer buffers, using common materials: 304 stainless steel, 606 1-T6 aluminum

and polymethyl methacrylate (PMMA) (trade-named Lucite or Plexiglas). These experiments are

described in Section If and the results are presented in Section III. Oscilloscope records for

velocity measurements of the stainless steel flyers are provided in Appendix A. Appendix B

contains postshot photographs of a stainless steel impactor disc and a stainless steel flyer disc.

II. EXPERIMENTAL DETAILS

Type 304 stainless steel was selected for the high impedance impactor and flyer materials

because of its relatively low Hugoniot elastic limit (-0.23 GPas) and the absence of shock-induced

phase transitions5 ,6 in the stress range for the present experiments and for potential future ex-

periments at higher impact velocities. These properties should result in a relatively low amplitude

elastic wave and only a single plastic wave generated initially in the impactor and flyer, thereby

simplifying the interpretation of the experimental results. The PMMA and 6061-T6 aluminum

buffer materials were selected on the basis of their shock impedances being less than that of

stainless steel and on the availability of Hugoniot and related material properties data. 5-8

Figure 2 is a schematic of the 40-mm-bore gas gun used for these experiments. Figure 3 is a

schematic of the muzzle region of the gun. The impactor disc is carried in a recess in the front of

the projectile. The buffer and flyer discs were held together by a thin layer of adhesive (Homalite

1100) and were held in the target holder by epoxy (Castall 300-RT7). The epoxy potting of the

target assembly was accomplished on a precision granite surface plate (coated with a thin layer of

2
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fluorocarbon mold release agent). This was to ensure the planarity of the buffer and flyer

combination with the surface of the target holder that would be in contact with the target

mounting flange of the gas gun.

"I UTSIDE

LOADER MUZZLE 7  
WA LL

BREECH VALVE BARREL RECOVERY
PRESSURE AREA
VESSEL

,- 1.8m 0 .8m 0+4 -- 7.11n $ .Im M --

Figure 2. Schematic of gas gun.

VELOCITY PINS

VACUUM LINE HOLDEREPX

A RSRE

BAKELITE TUBE

FLYER/VELOCITY
G 

IMPACTOR

FLYER

LUCITE PLATE
PROJECTILE

TARGET MOUNTING FLANGE

Figure 3. Schematic of the muzzle region of the gas gun with a target configuration for an

impact staging experiment. The impactor disc is carried on the front of the projectile

and impacts the buffer disc that is in contact with the flyer disc. After the flyer disc

has moved a distance of approximately 6.4 mm, its velocity is measured with the

array of charged velocity pins. The velocity of the projectile and impactor prior to

impact is measured with the charged pins in the side of the barrel.

3



A set of four flyer velocity measurement pins positioned at 900 intervals on a 12.6-mm-

diameter circle around a central grounding pin were mounted in a Lucite and epoxy holder behind

the flyer. A Lucite mold (coated with layer of vacuum grease) was used to fabricate the velocity

pin holder. The pins were made from 50-mm lengths of 0-80 UNF stainless steel threaded rod; one

end of each rod was lapped perpendicular to the rod axis. The threads were coated with a

fluorocarbon mold release agent prior to being potted in the epoxy; this permitted turning of the

rods in the cured epoxy to adjust the relative positions of the pin tips. After the buffer and flyer

discs were secured in the target holder, a precision 6.35-mm-thick copper spacer disc was placed on

the back side of the flyer. The holder for the pins was then secured to the target holder by two

10-32 UNF screws. The grounding pin was then adjusted until it contacted the spacer disc. The pin

holder was then demounted from the target holder and mounted on a special granite fixture4 for

precision positioning of the velocity pin tips. A dial indicator height gauge with 0.002-mm

resolution (Scherr-Tumico Model BL5) was used to measure the relative heights of the velocity pin

tips from the plane of the tip of the ground pin.

Two of the velocity pin tips (at 0 and 1800 positions) were adjusted to be 0.51 ±0.02 mm

below the plane of the ground pin tip. The remaining two pin tips (at 90 and 2700 positions)

were adjusted to be 0.51 ±0.02 mm below the plane of the first pair of pin tips. All the pins were

then secured with fast setting epoxy (Hardman 8173). The pins were connected by coaxial cables

to time-of-contact measurement circuits.9 The four velocity pins were electrically charged and

have the voltage ratios 6:3:2:1, respectively. These ratios are used to distinguish between the

grounding closure of each of the four pin circuits. (The flyer contacts the ground pin first to

ensure proper pin pulse responses).

Figure 4 shows an unassembled target configuration. The target holder containing a buffer

and flyer disc combination is shown in front of the velocity pin holder. Figure 5 shows views of an

assembled target configuration.
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Figure 4. Photograph of an unassembled target configuration. The target holder containing a

buffer and flyer combination is shown in front of the velocity pin holder. The array

of four velocity pins and the central grounding pin can be men protruding from the

epoxy part of the velocity pin holder. The coaxial cables connect the velocity pins to

the charging and contact sensing circuits.

5
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(a)

(b)

Figure 5. Photographs of an assembled target configuration. (a) Side view showing the impact

surface of the buffer disc (at left of target holder) and the concentric annular surface

of the target holder that contacts the target mounting flange of the gas gun. (b) Back

view showing attachment of velocity pins to the coaxial cables.
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III. RESULTS AND SUMMARY

The details of the planar impact staging experiments are presented in Table 1. The impactor

discs were 35.6-mm-diameter, 5.0-mm-thick, 304 stainless steel. For Shot 161, with a single

3-mm-thick PMMA buffer layer and a r-mm-thick stainless steel flyer, the measured flyer velocity

was 1.40 times the initial velocity of the impactor. For Shot 162, the 3-mm-thick buffer consisted

of a 1.8-mm-thick aluminum alloy layer and a 1.2-mm-thick PMMA layer; the measured velocity of

the 1-mm-thick stainless steel flyer was 1.59 times the initial velocity of the impactor.

The SRI PUFF 8 one-dimensional stress wave propagation computer program7 was used to
calculate the velocities of the material layers. Figures 6 and 7 show the calculated impactor and

flyer velocities as a function of time after impact for Shots 161 and 162, respectively. The cal-
culated and measured velocities for the stainless steel flyers agree to within 10%. Calculations

with the Sandia Laboratories WONDY IV computer program1 0 gave very similar results.' 2 The

PUFF 8 calculations indicate that the stainless steel impactor velocities for Shots 161 and 162
decreased by an average of about 53% after impact. The calculated final velocity for the aluminum

alloy buffer layer (Shot 162) indicated that the metal part of the buffer was accelerated to within

17% of the impactur initial velocity.

In summary, it has been demonstrated that for these simple one- and two-layer buffer planar

staging configurations it is possible to launch metal flyer layers at velocities approximately 1.5

times that of the initial impactor velocity.

7
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Figure&6 Calculated impactor and flyer velocities as a function of tim after impact for Shot 161.
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Figure 7. Calculated impactor and flyer velocities as a function of time after impact for Shot 162.
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APPENDIX A

OSCILLOSCOPE RECORDS OF PIN CLOSURE
PULSES FOR FLYER VELOCITY

MEASUREMENTS

A-I



Figure A-1. Oscilloscope record of flyer velocity pin closure pulses for Shot 161. The vertical
scale is 2 v/div and the horizontal scale is 0.1 s/div. A 0.02-ps period time calibra-
tion wave is shown at the bottom.

Figure A-2. Oscilloscope record of flyer velocity pin closure pulses for Shot 162. The vertical
scale is 2 v/div and the horizontal scale is 0.1 ps/div. A 0.02-ps period time calibra-
tion wave is shown at the bottom.
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APPENDIX B

POSTSHOT PHOTOGRAPHS OF A STAINLESS
STEEL IMPACTOR AND A STAINLESS

STEEL FLYER

B-i



(a)

(b)

Figure B-I. Postshot photographs of the recovered stainless steel impactor and stainless steel
flyer for Shot 161. (a) Surfaces that impacted the flyer velocity pins. (b) Opposite
surfaces. (c) Edge view; direction of motion of impactor and flyer was from left to

ight in the figure.
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Figure B-1 (Continued).
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